Notch Notch
Manual 1.0 Manual 0.9.23
 Light | Dark
Generate Weightmap

Generate Weightmap

Updated: 10 Feb 2025

Generates a weightmaps from input sources

image

Example .dfx

Method #

This node generates generate per-vertex or per-polygon weightmap based on various input data types, such as Shading Nodes, Generators, and Procedurals. These can then be used to vary the strength of Deformers on the parent mesh.

The output from this node is a vertex weightmap which is unique to the parent mesh, so can’t be used to influence other meshes.

Node placement is important! Weightmaps are generated following the deformer processing stack, so make sure to place the weightmap at some point before the deformer its applied to.

Parameters

These properties control the 3D transforms of the node. Transforms will generally be inherited by child nodes, although they can be ignored through the Inherit Transform Channels attributes.

ParameterDetails
Position X The objects position along the local x-axis.
Position Y The objects position along the local y-axis.
Position Z The objects position along the local z-axis.
Rotation Heading The objects rotation around the local y-axis.
Rotation Pitch The objects rotation around the local x-axis.
Rotation Bank The objects rotation around the local z-axis.
Scale X The objects scale along the local x-axis.
Scale Y The objects scale along the local y-axis.
Scale Z The objects scale along the local z-axis.

Control the inheritance of the transforms from the parent.

ParameterDetails
Position Toggle inheritance of the Position from the parent.
Rotation Toggle inheritance of the Rotation from the parent.
Scale Toggle inheritance of the Scale from the parent.
World Position Only Inherit the world position from the parent only, rotation and scale will be ignored. Overrides above properties.
Inherit Time Toggle inheritance of time from the parent.

These properties control the core behaviours of the node.

ParameterDetails
Apply Mode Choose whether the deformer applies to the individual vertices or the mesh chunks.
  • Vertices : The mesh deformations are applied to the mesh vertices.
  • Chunks : The mesh deformations are applied to the separated mesh pieces.
Transform Space Choose which transform space the deformer uses for deformation. Does not affect falloffs.
  • Local : Deformations are calculated in the Local Space of the object, so transformations of the parent mesh will not affect the deformation.
  • World : Deformations are calculated in the World Space of the scene, so transformations of the parent mesh will apply the deformer differently depending on the mesh position.
Blend Amount Global override for how much the deformer affects the mesh.
Time Mode How the deformer updates with relation to the timecode.
  • Locked To Timecode : The deformer deformations are locked to the timecode and the same time will always yield the same deformations.
  • Running / Looping : The deformer deformations are disconnected from the timecode and will run seamlessly at the end of the composition.
Mode The mode by which the value is generated.
  • Falloff Only : The deformer’s falloff parameters are used to calculate the weight.
  • Texture Coordinate - X : The X component of the geometry’s texture coordinate is scaled by the falloff and used as the weight.
  • Texture Coordinate - Y : The Y component of the geometry’s texture coordinate is scaled by the falloff and used as the weight.
  • Texture : An input texture is sampled using the geometry’s texture coordinates and the luminance of the sampled pixel is used as the weight.
  • Procedural : A procedural system is used to generate the weight based on the geometry’s vertex coordinates.
  • Shading : A shading node is used to generate the weight based on the geometry’s vertex coordinates.
  • Normal Facing Direction : A value is generated by the direction of the normal and used as the weight.
  • Random : The weight is generated at random across the geometry.
Per-Polygon Weightmap Determines whether the weightmap should specify a value per-polygon or per-vertex.
Gain Scale the weighting per vertex for all vertices.
Offset Offset the generated weights for all vertices.
Sharpness Ramps the sharpness of the generated value to a power.
Min Value Limit the minimum weight generated for all vertices.
Max Value Limit the maximum weight generated for all vertices.
Invert Invert the weights across the weightmap.
Seed Seed for the noise if using the mode: “Random”.
UV Scale X Scale the UV texture along the X axis. Only functions with one fo the texture modes selected.
UV Scale Y Scale the UV texture along the Y axis. Only functions with one fo the texture modes selected.
UV Offset X Offset the UV texture along the X axis. Only functions with one fo the texture modes selected.
UV Offset Y Offset the UV texture along the Y axis. Only functions with one fo the texture modes selected.
Texture Wrap Mode U Controls how textures used by Weightmap are wrapped when the U value range exceeds 0 to 1. Only functions with one fo the texture modes selected.
Texture Wrap Mode V Controls how textures used by Weightmap are wrapped when the V value range exceeds 0 to 1. Only functions with one fo the texture modes selected.
Show Weightmap Visualise the weightmap as vertex colours on the source geometry

These properties control the falloff of the node. Falloff controls how much influence the node has on anything it affects.

ParameterDetails
Falloff Mode Which mode to use to calculate the falloff.
  • Off : No falloff is used. Everything will be affected equally.
  • Spherical : Falloff is drawn outward from a central point, forming a spherical falloff.
  • Cylindrical : Falloff is drawn outward from a line, forming a cylindrical falloff.
  • Planar : Falloff is drawn outwards in one or more directions from a plane, forming a planar falloff.
  • Procedural : Uses a connected procedural system to describe the falloff area. A procedural node must be input for this property to function.
  • Cubic : Falloff is calculated from within a cube.
Falloff Axis Which axis the falloff should be oriented on.
Falloff Direction When using “Planar” mode, which direction to use to calculate the falloff.
  • Bidirectional : The node’s effect will be the most along the plane. It will then falloff in both directions.
  • Negative : The node’s effect will be the most along the plane and in the positive direction. It will then falloff in the negative direction.
  • Positive : The node’s effect will be the most along the plane and in the negative direction. It will then falloff in the positive direction.
Falloff Easing Mode Interpolation method used to calculate the falloff within its range of influence.
  • Linear : Falloff will be calculated linearly across the falloff range.
  • Sine : Falloff will be calculated using a sine function across the falloff range.
  • Quadratic : Falloff will be calculated using a quadratic function across the falloff range.
  • Cubic : Falloff will be calculated using a cubic function across the falloff range.
  • Circular : Falloff will be calculated using a circular function across the falloff range.
  • Bounce Back : Falloff uses a function which as values reach the edge of the falloff range, they will overshoot and bounce back.
  • Elastic : Falloff uses a function similar to bounce back, but the value will initially move in the opposite direction, creating a “pull and release” effect.
Falloff Size X Size of the falloff range along the X axis.
Falloff Size Y Size of the falloff range along the Y axis.
Falloff Size Z Size of the falloff range along the Z axis.
Outer Range Outer range of the falloff.
Inner Range Inner range of the falloff.
Curve Power Controls the rate of change of the falloff between the inner and outer range.
Invert Inverts the effect of the falloff.

The properties control the time at which the node is active. See Timeline for editing time segments.

ParameterDetails
Duration Control the duration of the node’s time segment.
  • Composition Duration : Use the length of the composition for the node’s time segment duration.
  • Custom : Set a custom duration for the node’s time segment.
Node Time The custom start and end time for the node.
Duration (Timecode) The length of the node’s time segment (in time).
Duration (Frames) The length of the node’s time segment (in frames).
Time Segment Enabled Set whether the node’s time segment is enabled or not in the Timeline.

Inputs

NameDescriptionTypical Input
ImageThe image that is sampled when the mode is set to “Texture”.Video Loader
Procedural RootThe procedural system that is sampled when the mode is set to “Procedural”.Procedural Root
Shading NodeThe shading node that is sampled when the mode is set to “Shading”.Fractal Noise
Falloff NodeUse an input node to control the transformation values of the falloff.Falloff
Generated WeightmapAdd a weightmap to vary the strength of the deformer across the surface.Generate Weightmap
Transform ModifiersApply the transforms of another node to this node.Null
Target NodeModifiy the rotations of the node to always direct the z axis towards the input.Null
Local Transform OverrideApply the transforms of another node to this node, relative to its parent.Null

Related Videos