Notch Notch
Manual 1.0 Manual 0.9.23
 Light | Dark
Noise Deformer

Noise Deformer

Updated: 3 Feb 2025

Deforms geometry using noise
Example .dfx

Method #

This node displaces the vertices of a mesh using noise, fractal noise, a grid, and/or an input image or a video node.

Parameters

These properties control the 3D transforms of the node. Transforms will generally be inherited by child nodes, although they can be ignored through the Inherit Transform Channels attributes.

ParameterDetails
Position X The objects position along the local x-axis.
Position Y The objects position along the local y-axis.
Position Z The objects position along the local z-axis.
Rotation Heading The objects rotation around the local y-axis.
Rotation Pitch The objects rotation around the local x-axis.
Rotation Bank The objects rotation around the local z-axis.
Scale X The objects scale along the local x-axis.
Scale Y The objects scale along the local y-axis.
Scale Z The objects scale along the local z-axis.

Control the inheritance of the transforms from the parent.

ParameterDetails
Position Toggle inheritance of the Position from the parent.
Rotation Toggle inheritance of the Rotation from the parent.
Scale Toggle inheritance of the Scale from the parent.
World Position Only Inherit the world position from the parent only, rotation and scale will be ignored. Overrides above properties.
Inherit Time Toggle inheritance of time from the parent.

These properties control the core behaviours of the node.

ParameterDetails
Weightmap Add a weight map to determine where the deformer is more or less effective.
Apply Mode Choose whether the deformer applies to the individual vertices or the mesh chunks.
  • Vertices : The mesh deformations are applied to the mesh vertices.
  • Chunks : The mesh deformations are applied to the separated mesh pieces.
Transform Space Choose which transform space the deformer uses for deformation. Does not affect falloffs.
  • Local : Deformations are calculated in the Local Space of the object, so transformations of the parent mesh will not affect the deformation.
  • World : Deformations are calculated in the World Space of the scene, so transformations of the parent mesh will apply the deformer differently depending on the mesh position.
Displacement Direction Change the direction the deformer displaces the mesh.
  • Normal : The mesh will be displaced in the direction of the vertex normals.
  • Spherical : The mesh will be displaced in a spherical direction from the object’s origin.
  • Planar : All vertices are displaced in the same direction, along the planar z axis.
Blend Amount Global override for how much the deformer affects the mesh.
Displacement How much the deformer displaces the original mesh.
Max Displacement Maximum distance the deformer can displace the mesh.
Fractal Noise Amount The amount of fractal noise that is applied to the deformer.
Fractal Noise Scale The scale of the fractal noise that is applied to the deformer.
Fractal Noise Threshold The threshold for the fractal noise, below which the no deformation will be applied
Octaves How many times the noise generation is iterated.
Grid Amount How much the deformer uses a grid to displace the mesh.
Noise Amount The amount of noise that is applied to the deformer.
Texture Amount How much a video input into the node or an image selected in the image attribute affects the deformer.
Animation Speed Speed the deformer is animated at.
Time Mode How the deformer updates with relation to the timecode.
  • Locked To Timecode : The deformer deformations are locked to the timecode and the same time will always yield the same deformations.
  • Running / Looping : The deformer deformations are disconnected from the timecode and will run seamlessly at the end of the composition.

These properties control the falloff of the node. Falloff controls how much influence the node has on anything it affects.

ParameterDetails
Falloff Mode Which mode to use to calculate the falloff.
  • Off : No falloff is used. Everything will be affected equally.
  • Spherical : Falloff is drawn outward from a central point, forming a spherical falloff.
  • Cylindrical : Falloff is drawn outward from a line, forming a cylindrical falloff.
  • Planar : Falloff is drawn outwards in one or more directions from a plane, forming a planar falloff.
  • Procedural : Uses a connected procedural system to describe the falloff area. A procedural node must be input for this property to function.
  • Cubic : Falloff is calculated from within a cube.
Falloff Axis Which axis the falloff should be oriented on.
Falloff Direction When using “Planar” mode, which direction to use to calculate the falloff.
  • Bidirectional : The node’s effect will be the most along the plane. It will then falloff in both directions.
  • Negative : The node’s effect will be the most along the plane and in the positive direction. It will then falloff in the negative direction.
  • Positive : The node’s effect will be the most along the plane and in the negative direction. It will then falloff in the positive direction.
Falloff Easing Mode Interpolation method used to calculate the falloff within its range of influence.
  • Linear : Falloff will be calculated linearly across the falloff range.
  • Sine : Falloff will be calculated using a sine function across the falloff range.
  • Quadratic : Falloff will be calculated using a quadratic function across the falloff range.
  • Cubic : Falloff will be calculated using a cubic function across the falloff range.
  • Circular : Falloff will be calculated using a circular function across the falloff range.
  • Bounce Back : Falloff uses a function which as values reach the edge of the falloff range, they will overshoot and bounce back.
  • Elastic : Falloff uses a function similar to bounce back, but the value will initially move in the opposite direction, creating a “pull and release” effect.
Falloff Size X Size of the falloff range along the X axis.
Falloff Size Y Size of the falloff range along the Y axis.
Falloff Size Z Size of the falloff range along the Z axis.
Outer Range Outer range of the falloff.
Inner Range Inner range of the falloff.
Curve Power Controls the rate of change of the falloff between the inner and outer range.
Invert Inverts the effect of the falloff.

The properties control the time at which the node is active. See Timeline for editing time segments.

ParameterDetails
Duration Control the duration of the node’s time segment.
  • Composition Duration : Use the length of the composition for the node’s time segment duration.
  • Custom : Set a custom duration for the node’s time segment.
Node Time The custom start and end time for the node.
Duration (Timecode) The length of the node’s time segment (in time).
Duration (Frames) The length of the node’s time segment (in frames).
Time Segment Enabled Set whether the node’s time segment is enabled or not in the Timeline.

Inputs

NameDescriptionTypical Input
Grid NodeA node used to control the transformation values of the grid attribute.Null Node
Falloff NodeUse an input node to control the transformation values of the falloff.Null
Generated WeightmapAdd a weightmap to vary the strength of the deformer across the surface.Generate Weightmap
Transform ModifiersApply the transforms of another node to this node.Null
Target NodeModifiy the rotations of the node to always direct the z axis towards the input.Null
Local Transform OverrideApply the transforms of another node to this node, relative to its parent.Null

Related Videos