Notch Notch
Manual 1.0 Manual 0.9.23
 Light | Dark
Quantise Effector

Quantise Effector

Updated: 4 Dec 2023

Modifies a cloner system by quantising all the clone positions.

Method #

This node restricts the possible range of values a clone can be translated, rotated, or scaled to. This means clones can appear locked to particular transformations, but jump to new positions as clones processed earlier change or animate. The Falloffs for this node are binary, meaning the effect is either on or off within the region and it doesn’t interpolate between the two states.

Connect the output to the effector input of any cloner node to apply it to the camera system. Multiple effectors connected to the same output will stack, and order of operations chosen by position on the nodegraph.

Parameters

These properties control the 3D transforms of the node. Transforms will generally be inherited by child nodes, although they can be ignored through the Inherit Transform Channels attributes.

ParameterDetails
Position X The objects position along the local x-axis.
Position Y The objects position along the local y-axis.
Position Z The objects position along the local z-axis.
Rotation Heading The objects rotation around the local y-axis.
Rotation Pitch The objects rotation around the local x-axis.
Rotation Bank The objects rotation around the local z-axis.
Scale X The objects scale along the local x-axis.
Scale Y The objects scale along the local y-axis.
Scale Z The objects scale along the local z-axis.

Control the inheritance of the transforms from the parent.

ParameterDetails
Position Toggle inheritance of the Position from the parent.
Rotation Toggle inheritance of the Rotation from the parent.
Scale Toggle inheritance of the Scale from the parent.
World Position Only Inherit the world position from the parent only, rotation and scale will be ignored. Overrides above properties.
Inherit Time Toggle inheritance of time from the parent.

These properties control the core behaviours of the node.

ParameterDetails
Blend Amount Controls the amount the resulting transforms of each clone after the effector is applied is blended with the original transform.
Space The transform space the Effector uses to influence the clones.
  • Effector - World : Use the world space transforms of the effector to influence the clones.
  • Cloner : Use the transforms in local space to the cloner to influence the clones.
  • Object : Use the transforms in object space to influence the clones.

These properties control the falloff of the node. Falloff controls how much influence the node has on anything it affects.

ParameterDetails
Falloff Mode Which mode to use to calculate the falloff.
  • Off : No falloff is used. Everything will be affected equally.
  • Spherical : Falloff is drawn outward from a central point, forming a spherical falloff.
  • Cylindrical : Falloff is drawn outward from a line, forming a cylindrical falloff.
  • Planar : Falloff is drawn outwards in one or more directions from a plane, forming a planar falloff.
  • Procedural : Uses a connected procedural system to describe the falloff area. A procedural node must be input for this property to function.
  • Cubic : Falloff is calculated from within a cube.
Falloff Axis Which axis the falloff should be oriented on.
Falloff Direction When using “Planar” mode, which direction to use to calculate the falloff.
  • Bidirectional : The node’s effect will be the most along the plane. It will then falloff in both directions.
  • Negative : The node’s effect will be the most along the plane and in the positive direction. It will then falloff in the negative direction.
  • Positive : The node’s effect will be the most along the plane and in the negative direction. It will then falloff in the positive direction.
Falloff Easing Mode Interpolation method used to calculate the falloff within its range of influence.
  • Linear : Falloff will be calculated linearly across the falloff range.
  • Sine : Falloff will be calculated using a sine function across the falloff range.
  • Quadratic : Falloff will be calculated using a quadratic function across the falloff range.
  • Cubic : Falloff will be calculated using a cubic function across the falloff range.
  • Circular : Falloff will be calculated using a circular function across the falloff range.
  • Bounce Back : Falloff uses a function which as values reach the edge of the falloff range, they will overshoot and bounce back.
  • Elastic : Falloff uses a function similar to bounce back, but the value will initially move in the opposite direction, creating a “pull and release” effect.
Falloff Size X Size of the falloff range along the X axis.
Falloff Size Y Size of the falloff range along the Y axis.
Falloff Size Z Size of the falloff range along the Z axis.
Outer Range Outer range of the falloff.
Inner Range Inner range of the falloff.
Curve Power Controls the rate of change of the falloff between the inner and outer range.
Invert Inverts the effect of the falloff.

These properties control the selection of clones that you want the effector to influence.

ParameterDetails
Selection Mode Set the mode for Index-Based Weighting.
  • Disabled : Effector influences all clones.
  • ID : Use clone IDs to define which clones the effector influences.
  • Index : Use clone indexes to define which clones the effector influences.
Selection Operation Set how you want top define the selection.
  • Index : Select a specific clone that will be influenced by the effector.
  • Range : Select a range of clones that will be influenced by the effector.
  • Step : Select every n clone to be influenced by the effector.
  • Random In Range : Clones will be selected randomly to be influenced within a set range.
Index The first clone index in the range.
Max Index The last clone index in the range.
Index Step The increment used in “Step” mode.
Index Seed The seed used in “Random In Range” mode.
Index Falloff Range Falloff amount for Index-Based Weighting.
Index Falloff Power The curve power of the falloff for Index-Based Weighting.

These properties control how an effector transforms the clones.

ParameterDetails
Position X Offset the clones x position from the current position.
Position Y Offset the clones y position from the current position.
Position Z Offset the clones z position from the current position.
Rotation Heading Offset the clones y rotation from the current rotation.
Rotation Pitch Offset the clones z rotation from the current rotation.
Rotation Bank Offset the clones x rotation from the current rotation.
Scale X Offset the clones x scale from the current scale.
Scale Y Offset the clones y scale from the current scale.
Scale Z Offset the clones z scale from the current scale.
Uniform Scale Uniformally scale the clones by the same value along all axes.
Apply To Position Apply the position changes from the effector to the clones.
Apply To Rotation Apply the rotation changes from the effector to the clones.
Apply To Scale Apply the scale changes from the effector to the clones.

The properties control the time at which the node is active. See Timeline for editing time segments.

ParameterDetails
Duration Control the duration of the node’s time segment.
  • Composition Duration : Use the length of the composition for the node’s time segment duration.
  • Custom : Set a custom duration for the node’s time segment.
Node Time The custom start and end time for the node.
Duration (Timecode) The length of the node’s time segment (in time).
Duration (Frames) The length of the node’s time segment (in frames).
Time Segment Enabled Set whether the node’s time segment is enabled or not in the Timeline.

Inputs

NameDescriptionTypical Input
Falloff NodeUse an input node to control the transformation values of the falloff.Falloff
Procedural FalloffUse a procedural system to generate falloff from. Useful for creating complex and unconventional falloffs from an Effector.Procedural Root
Transform ModifiersApply the transforms of another node to this node.Null
Target NodeModifiy the rotations of the node to always direct the z axis towards the input.Null
Local Transform OverrideApply the transforms of another node to this node, relative to its parent.Null

Related Videos